Delay-Tolerant Networking for Challenged Internets

Kevin Fall

Intel Research

Berkeley, CA

kfall@intel.com

http://www.intel-research.net

http://www.dtnrg.org

Apr 20, 2004 - Sprint Labs

RFC1149 : A Challenged Internet

- "...encapsulation of IP datagrams in avian carriers" (i.e. birds, esp carrier pigeons)
- Delivery of datagram:
 - Printed on scroll of paper in hexadecimal
 - Paper affixed to AC by duct tape
 - On receipt, process is reversed, paper is scanned in via OCR

Implementation of RFC1149

<u>CPIP</u>: Carrier Pigeon Internet Protocol

• See http://www.blug.linux.no/rfc1149/

4/20/2004

K. Fall, Intel Research, Berkeley

Ping Results

Script started on Sat Apr 28 11:24:09 2001 vegard@gyversalen:~\$ /sbin/ifconfig tun0 Link encap:Point-to-Point Protocol t.un0 inet addr:10.0.3.2 P-t-P:10.0.3.1 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:150 Metric:1 RX packets:1 errors:0 dropped:0 overruns:0 frame:0 TX packets: 2 errors: 0 dropped: 0 overrups: 0 carrier: 0 collisions Korivate RX bytes:88 (88.0 b) TX bytes:168 (168 vegard@gyversalen:~\$ ping -i 900 (10.0.3.1 PING 10.0.3.1 (10.0.3.1): 56 data bytes 64 bytes from 10.0.3.1: icmp_seq=0 ttl=255 /time=6165731.1 ms 64 bytes from 10.0.3.1: icmp_seq=4 ttl=25\$ time=3211900.8 ms 64 bytes from 10.0.3.1: icmp_seq=2 ttl=25\$ time=5124922.8 ms 64 bytes from 10.0.3.1: icmp seq=1 ttl=255 time=6388671.9 ms --- 10.0.3.1 ping statistics ---9 packets transmitted, 4 packets received 55% packet loss Aigh Loss round-trip min/avg/max = 3211900.8/5222806.6/6388671.9 ms vegard@gyversalen:~\$ exit Script done on Sat Apr 28 14:14:28 2001

K. Fall, Intel Research, Berkeley

4/20/2004

Network Intermittency

- *Intermittency* the inability to establish and maintain a contemporaneous e2e association
 - Causes: interference, power failure, mis-configuration
 - Observation: potentially much cheaper than 'persistent'
- Applications and networking layer should gracefully accommodate network outages
 - Planned or not
 - And continue using whatever technology is available
- Networking should be *Delay Tolerant*

Example: Developing Regions

- Lots of projects to get the *Web* to 3rd world:
 - But not all applications require the Web
 - Web does not equal "The Internet"
 - (e.g. e-mail = most popular Internet application)
 - 'Always on' networking may be hard
 - High installation and operational costs
 - Poor connectivity reflected in poor application performance
- Assuming network intermittency may be better...

Unstated Internet Assumptions

- End-to-end RTT is not terribly large
 - A few seconds at the very most [typ < 500ms]
 - (reactive window-based flow/congestion control works)
- Some path exists between endpoints
 - Routing finds single "best" existing route
 - [ECMP is an exception]
- E2E Reliability using ARQ works well
 - True for low loss rates (under 2% or so)
- Packet switching is the right abstraction
 - Internet/IP makes packet switching interoperable

Non-Internet-Like Networks

- Stochastic mobility
 - Mesh networks
 - Mobile routers w/disconnection (e.g. ZebraNet)
- Periodic/predictable mobility
 - Spacecraft communications
 - Busses, mail trucks, police cars, etc (InfoStations)
- "Exotic" links
 - Deep space [40+ min Mars RTT; episodic connectivity]
 - Underwater [acoustics; low rate; high error; latency]

New challenges...

- Very Large Delays
 - Natural prop delay could be seconds to minutes
 - If disconnected, may be much longer
- Intermittent/Scheduled/Opportunistic Links
 - Scheduled transfers can save power and help congestion; scheduling required for rare link assets
- High Link Error Rates / Low Capacity
 - RF noise, light or acoustic interference, LPI/LPD concerns
- Different Network Architectures
 - Many specialized networks won't/can't ever run IP

What to Do?

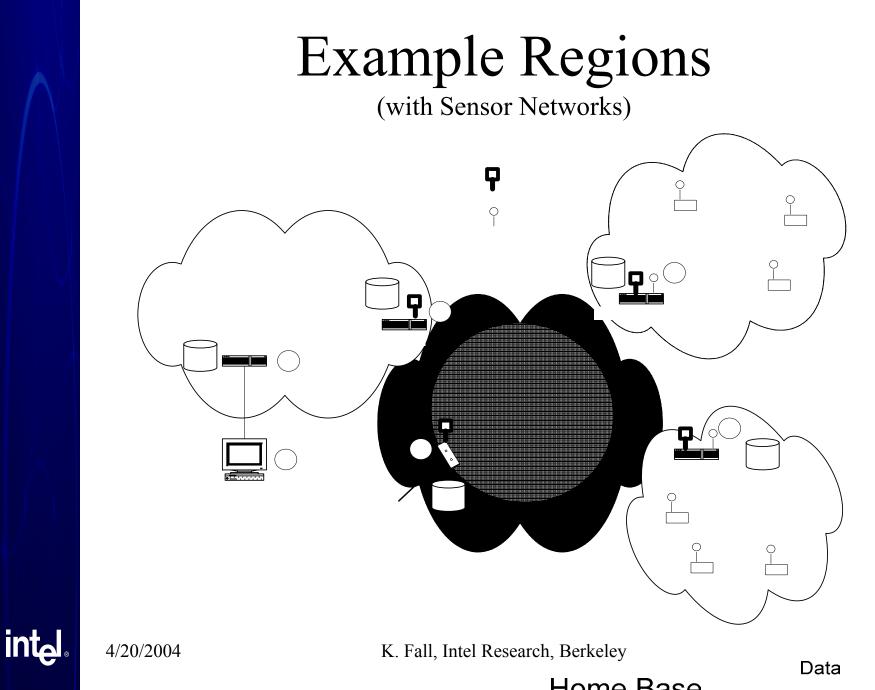
- Some problems surmountable in Internet/IP
 - 'cover up' the link problems using PEPs
 - Mostly used at "edges," not so much for transit
- Performance Enhancing Proxies (PEPs):
 - Do "something" in the data stream causing endpoint TCP/IP systems to not notice there is a problem
 - Lots of issues with transparency: security, operation with asymmetric routing, etc
- Some environments *never* have an e2e path...
 - Yet still want eventual delivery with high probability

4/20/2004

Delay-Tolerant Networking Architecture

- Goals
 - Internetwork(s) supporting interoperability across
 'radically heterogeneous' networks
 - Acceptable performance in high loss/delay/error environments
 - Decent performance for low loss/delay/errors
- Components
 - Flexible Naming Scheme with late binding
 - Message Overlay Abstraction and API
 - Routing and link/contact scheduling w/CoS

- Per-hop Authentication and Reliability 4/20/2004 K. Fall, Intel Research, Berkeley


Naming

- Support 'radical heterogeneity' using *regions*:
 - Instance of an internet, not so radical inside a region
 - Common naming and protocol conventions
- <u>Endpoint Name</u>: ordered name pair {R,L}
 - R: routing region [globally valid]
 - L: region-specific, opaque outside region R
- Late binding of L permits naming flexibility:
 - Associative or location-oriented names [URN vs URL]
 - May encompass esoteric routing [e.g. diffusion]
 - Perhaps an Internet-style URI [see RFC2396]
- *To do*: make **R**, **L** compressible in transit networks 4/20/2004 K. Fall, Intel Research, Berkeley

Naming Challenges

- Structure of R (region name)
 - Variable length, hierarchical, centrally? allocated
 - Could likely use DNS namespace w/out mechanism
- How does a sender know/learn destination's R?
 - "just does" (like well-known port)
 - Some centralized or distributed service TBD (hard)
- What semantic rules really apply to L?
 - Associative and location-based names seem useful
 - Associative "send to Kevin's pager" [who looks up?]
 - Location "send to pager [addr: p103x] via Inet gw"
- Associative naming requires *indirection*

- Unworkable in high-delay/disconn environment 4/20/2004 K. Fall, Intel Research, Berkeley

Reliable Message Overlay

- End-to-End Reliable Message Service: "Bundles"
 - "postal-like" message delivery over regional transports with coarse-grained CoS [4 classes]
 - *Options*: return receipt, "traceroute"-like function, alternative reply-to field, custody transfer
 - Supportable on nearly any type of network
- Applications send/receive bundles
 - "Application data units" of possibly-large size
 - May require framing above some transport protocols
 - Arrange for responses to be processed long after request was sent (application *re-animation*)

4/20/2004

Is this just e-mail?

	naming/	routing	flow	multi-	security	reliable	priority
	late binding		contrl	app API		delivery	
e-mail	Y	N (weak)	Y (weak)	Ν	Y (opt)	Y (weak)	Y (weak)
DTN	Υ	Y	Y	Y	Y (opt)	opt	Y

- Many similarities to e-mail service interface
- Primary difference involves routing
- E-mail depends on an underlying layer's routing:
 - Cannot generally move messages closer to their destinations in a partitioned network
 - In the Internet (SMTP) case, not delay tolerant or efficient for long RTTs due to "chattiness"
- E-mail security authenticates only user-to-user 4/20/2004 K. Fall, Intel Research, Berkeley

Routing Graph Dynamics

- Topology dynamics may be *predictable*
 - "Scheduled Links"
 - May be direction specific [e.g. ISP dialup]
 - "Opportunistic Links"
 - Unscheduled, unexpected availability
 - "Predicted Links"
 - Learn from history or other non-perfect info
- Link ``Predictability continuum''
 - S/O: extreme cases of expected utility/avail of a route
 - Represent by a entropy-like measure (?)
 - Relationship to epidemic routing + erasure coding

Scheduled Link Routing

- <u>*Inputs*</u>: topology graph, vertex buffer limits, contact set, prioritized message demand matrix
- A *contact* is an opportunity to communicate:
 - One-way: (t_s, t_e, S, D, C, D)
 - (t_s, t_e): contact start and end times
 - (S, D): source/destination ordered pair
 - C: capacity (rate; assume const over [s..e]); D: delay
- Vertices have buffer limits; edges in G if ever in any contact
- *Problem*: Compute the "best" set of paths for all messages so as to minimize total delivery time [or something else]

Store and Forward

- Bundle routers generally have persistent storage
 - May offer custody transfer "service" if requested
 - Will try "very hard" to not discard messages for which it has accepted custody
 - Accepting custody for a bundle may involve a significant allocation of resources at a bundle router
- Some questions:
 - What do questions of flow and congestion control look like in one of these environment?
 - When should a bundle router avoid taking custody?
 - Given the hop-by-hop nature, if congestion control is figured out, does this also solve flow control?

Fragmentation & Replication

- Fragmentation: dice a large message up
- Replication: copy fragments to enhance delivery probability
- Proactive fragmentation
 - Achieve multi-path routing by splitting messages
 - Tricky relationship to custody transfer
- *Reactive* fragmentation
 - Make use of partially-received messages arriving at next hop
 - Effectively makes a fragment out of recv'd msg
 - Unpleasant issue for digital signatures

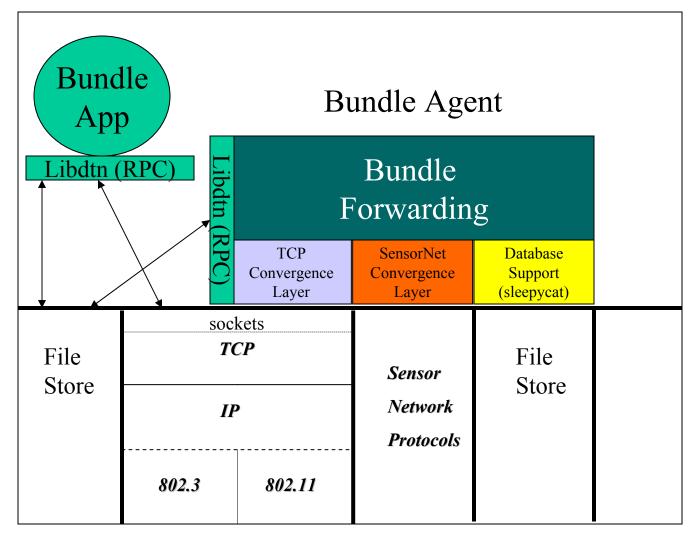
Security Concerns

- Infrastructure protection
 - Deny data forwarding to unauthorized users
- DTN Security Requirements
 - Authentication of overlay forwarders
 - (optional) authentication/privacy for end users
 - Support for access control list methods
 - Operation in primarily-disconnected environments

Security Concerns (2)

- Compromise for scalability
 - ACLs and user keys contained at firs-hop 'edge' routers
 - Edge routers authenticate and re-sign messages in their own keys
 - Next-hop routers need only check keys of its O(log n) [or maybe O(1)] neighbors

Security Issue Details

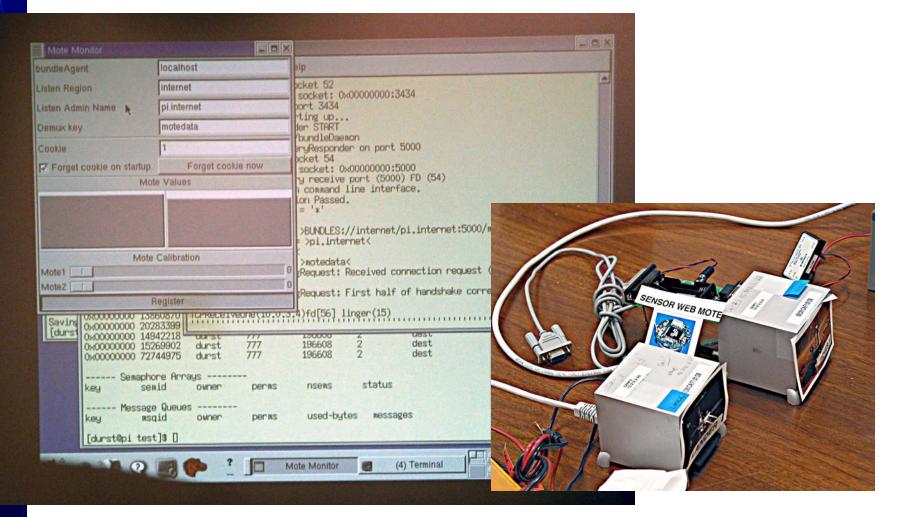

- Effect of a router compromise:
 - Router compromise could result in traffic being carried from that point onward
 - Router cannot completely masquerade as sender
 - Sending user still has its own private/public pair
- Identity-Based Cryptography (IBC)
 - Asymmetric scheme based on ECC (Weil/Tate pairing)
 - Allows a form of 'on the fly' generation of public keys
 - No public key storage
 - No sending copy of sender's public keys
 - Can do credentials as well
 - (New--Cryptanalysis may still find issues)

4/20/2004

Application Interface

- API is Asynchronous ["split-phase"]
 - Callback registrations are persistent
 - Methods to 're-animate' programs no long running
 - Implemented as RPC-based shared lib (Linux)
- Application interface details
 - Send options similar to postal system
 - Return-receipt, 4 priorities, 'traceroute'
 - Query options indicate whether message is likely to be offloaded from local node
 - Can be used for user interface and cache control
 - Status results to sender or 3rd party

Bundle Forwarder


Demo (1)

K. Fall, Intel Research, Berkeley

Demo (2)

K. Fall, Intel Research, Berkeley

DTN Project Status

- IETF/IRTF DTNRG formed end of 2002
 - See http://www.dtnrg.org
- DTN Agent Source code released 3/2003
 - Available via CVS (see web page)
- Several available documents (currently ID's):
 - DTNRG Architecture document
 - Bundle specification
 - Application of DTN in the IPN
- Spawned new program at DARPA
 - See http://www.darpa.mil/ato/solicit/DTN/

DTN for Developing Regions of the World

ICT4B – Information and Communication Technologies for Billions (NSF: UCB/Intel + HP)

- Systems approach to sustainable development
- Engage and educate researchers
- Harness talents of native peoples

System Architecture

- Clusters (service providers)
- Village Kiosks (cache, comms)
- End-user devices and sensors
- Intermittent Networking (DTN)

ICT Uses in Developing Regions

- Healthcare
- Government
- Trade
- Communications

Delay Tolerant Networking

- Network/applications tolerant to disruption/disconnection, heterogeneity
 - Power, interference
 - Mobility
 - Vastly cheaper infrastructure if realtime not required

ICT4B Project Status

- ICT4B NSF ITR funded 10/2003 (5yr)
- DTN forwarding layer and early apps being tested (code released 3/2003)
- Joint UCB/Intel attendance at 'ICT for Sustainable Development' conference Jan 2004/Bangalore; 'Bridging the Divide' conference Mar 2004/Berkeley; 'Digital Rally' Apr 2004/San Jose
- Fellow travelers: HP Labs India, IIT Bombay/Kanpur/Madras, Univ. of Washington, MITRE, DARPA, CMU, UCLA, JPL, U Waterloo

Acknowledgements

- Bob Durst, Keith Scott (MITRE)
- Vint Cerf (MCI)
- Scott Burleigh, Adrian Hooke (NASA/JPL)
- Juan Alonso (SICS)
- Howard Weiss (SPARTA)
- Forrest Warthman (Warththman)
- Stephen Farrell (Trinity College, Dublin/Ireland)
- Sushant Jain (Univ of Washington)
- Eric Brewer, Sergiu Nadevschi, Mike Demmer, Rabin Patra (UCB)
- Melissa Ho (Intel Research)
- Jordan Hayes (Thinkbank)
- The *dtn-interest* mailing list

4/20/2004

For more Information

- Delay Tolerant Networking Research Group
 http://www.dtnrg.org
- Intel Research
 - http://www.intel-research.net
- Technologies/Infrastructure for Developing Regions:
 - http://tier.cs.berkeley.edu

kfall@intel-research.net

K. Fall, Intel Research, Berkeley

Thank you...

