# Delay-Tolerant Networking for Challenged Internets

#### Kevin Fall

Intel Research
Berkeley, CA

kfall@intel-research.net

http://www.intel-research.net

## **Unstated Internet Assumptions**

- End-to-end RTT is not terribly large
  - A few seconds at the most
  - (window-based flow/congestion control works)
- Some path exists between endpoints
  - Routing finds single "best" existing route
    - [ECMP is an exception]
- E2E Reliability using ARQ works well
  - True for low loss rates (under 2% or so)
- Packet switching is the right abstraction
  - Internet/IP makes packet switching interoperable

#### New challenges...

- Very Large Delays
  - Natural prop delay could be seconds to minutes
  - If disconnected, may be much longer
- Intermittent and Scheduled Links
  - Scheduled transfers can save power and limit congestion; scheduling required for rare link assets
- High Link Error Rates
  - RF, light or acoustic interference, LPI/LPD reasons
- Different Network Architectures
  - Many specialized networks won't/can't ever run IP

6/5/2002

K. Fall, Intel Research, Berkeley

3

## Delay-Tolerant Architecture

- Goals
  - Interoperability across network architectures
  - Reasonable performance in high loss/delay environments
- Components
  - Flexible Naming Scheme with late binding
  - Message Overlay Abstraction and API
  - Routing and link/contact scheduling w/CoS
  - Per-hop Authentication and Reliability

6/5/2002

K. Fall, Intel Research, Berkeley

## Naming

- Instance of an internet

A region:

- Common naming and protocol conventions
- Tuples (names): ordered pairs (R, L)
  - R: routing region [globally valid, topologically significant]
  - L: region-specific, opaque outside region R
- Late binding of L permits naming flexibility:
  - May encompass esoteric routing [e.g. diffusion]
  - Could be object names, addresses, queries, etc.
  - Relates to flexibility of URL suffixes
- Want to make L compressible in transit networks

6/5/2002

K. Fall, Intel Research, Berkeley

5

Naming - Common Across All Regions
Name-to-Address Name-to-Address
Sinding Space A Binding Space B Binding Space C

## Reliable Message Overlay

- End-to-End Message Service: "Bundles"
  - "postal-like" message delivery over regional transports
  - Optional reliability, class of service, return receipt, and "traceroute"-like function with alternative reply-to indicators
- Key Idea: Reliability via Custody Transfer
  - Current Custodian owns reliable-delivery guarantee
  - Bundles transferred between custodians toward destination
  - Sender may free resources upon successful custody transfer (destination considered an eligible custodian)

6/5/2002

K. Fall, Intel Research, Berkeley

#### Message State

- Two distinct node types
  - P nodes: have persistent storage available
  - NP nodes: no persistent storage
  - P nodes might accept custody, NP nodes do not
- P node handling of custody transfers
  - Messages are stored persistently
  - Modifications to message forwarding state are treated as database operations (a database runs at P node message switches)
  - Forwarding engine replies with custody ACK to tuple indicated in the message "reply-to" field [sender may have to forward contents to this node for reliability]

6/5/2002

K. Fall, Intel Research, Berkeley

7

## Types of Routes

- · Scheduled and Unscheduled
  - Scheduled: known ahead of time
  - Unscheduled: opportunistic contact
- S/U characterization is direction-specific
  - Consider the two ends of a user/ISP link
- Predictability continuum:
  - S/U represents extreme cases regarding the expected availability of a route
  - Intermediate "predicted" category may evolve as a result of statistical estimation
  - Represent by a entropy-like measure (?)

6/5/2002

K. Fall, Intel Research, Berkeley

#### The Routing Problem

- A contact:
  - Communication opportunity, parameterized as:

 $(t_s, t_e, S, D, C, T)$ 

- (t<sub>s</sub>, t<sub>e</sub>): contact start and end times, if known
- (S, D): source/destination pairs
- C: contact capacity (rate); T: contact type
- A message:
  - Unit of transfer, parameterized as:

(B, P)

- B: message size (bytes); P: message prio [1..4]
- *Problem*: Compute "best" next hops for every message given a set of contacts [return to this...]

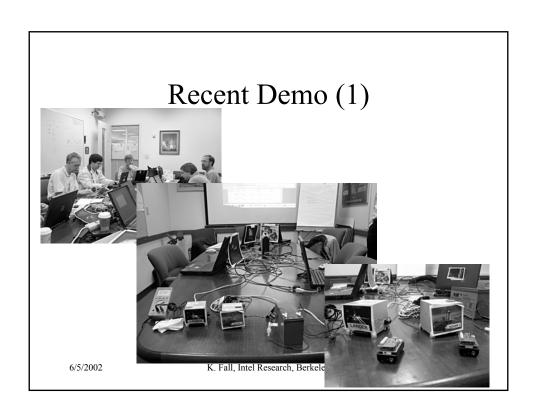
6/5/2002

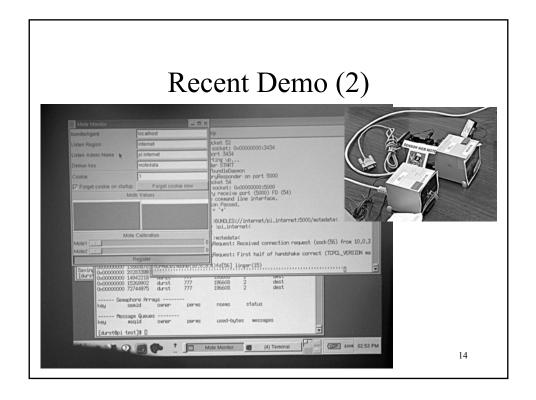
K. Fall, Intel Research, Berkeley

Ç

#### Flow Control

- Assume underlying protocols support some form of FC (either dynamic or static via a form of admission control)
- Flow-control is logically hop-by-hop, so problem is to convert flow control required at bundle layer to protocolspecific FC mechanism
- Fairly straightforward mapping problem when priorities are not included
  - With priorities, more sophistication required
  - In particular, how to map availability of (shared) buffers at bundle layer to protocol specific notions of flow control (e.g. slower reads on lesser prio TCP streams?)


6/5/2002


K. Fall, Intel Research, Berkeley



#### **API Sketch**

- Application API is "split-phase" using RPC
  - Message sends decoupled from async receives
  - Send message from memory or file
  - Establish handler for message receipt
    - → persistent: can cause "re-animation"
  - Apps may poll for arrived messages
- Current implementation is multi-threaded





## So, is this all just e-mail?

|        | naming/      | routing | flow   | multi- | security | reliable | priority |
|--------|--------------|---------|--------|--------|----------|----------|----------|
|        | late binding |         | contrl | арр    |          | delivery |          |
| e-mail | Υ            | N       | Υ      | N      | opt      | Υ        | N(Y)     |
| DTN    | Υ            | Y       | Y      | Υ      | opt      | opt      | Υ        |

- Many similarities to e-mail service interface
- Primary difference involves routing
- E-mail depends on an underlying layer's routing:
  - Cannot generally move messages closer to their destinations in a partitioned network
  - In the Internet (SMTP) case, not delay tolerant or efficient for long RTTs due to "chattiness"
- E-mail security authenticates only user-to-user

6/5/2002 K. Fall, Intel Research, Berkeley

#### Status

- DTN work based on earlier IPN Architecture
  - IPN: Interplanetary Internet (www.ipnsig.org)
  - Developed notion of bundling and naming
  - DTN extends and generalizes IPN to non-space environments
  - IRTF IPNRG group produced arch draft (now expired)
- Prototype Implementation
  - − ~15K lines of C code implementing DTN message switching prototype
  - Demonstrated support of Berkeley "motes" (sensors) and cfdp (JPL's file delivery protocol)

6/5/2002

K. Fall, Intel Research, Berkeley

16

#### **Futures**

- Continue research and development
  - To implement: implement custody transfer, improve robustness of TCP convergence layer, restart on disconnect
  - To design: appropriate security mechanisms
  - To research: solution to routing problem, application of DTN in other unusual environments
- Form a community
  - Transition existing IPNRG in IRTF to a broadened DTNRG

6/5/2002

K. Fall, Intel Research, Berkeley

17

## Acknowledgements

- People (vision, design, implementation):
  - Bob Durst (MITRE)
  - Scott Burleigh (NASA/JPL)
  - Keith Scott (MITRE)
- More people (vision, design, commentary):
  - Vint Cerf (MCI)
  - Adrian Hooke (NASA/JPL)
  - Eric Travis (GST)
  - The *ipn-team* mailing list at JPL

6/5/2002

K. Fall, Intel Research, Berkeley