A Delay-Tolerant Network Architecture for Challenged Internets

Kevin Fall

Intel Research

Berkeley, CA

kfall@intel.com

http://www.intel-research.net

Aug 26, 2003 – SIGCOMM Karlsruhe, Germany

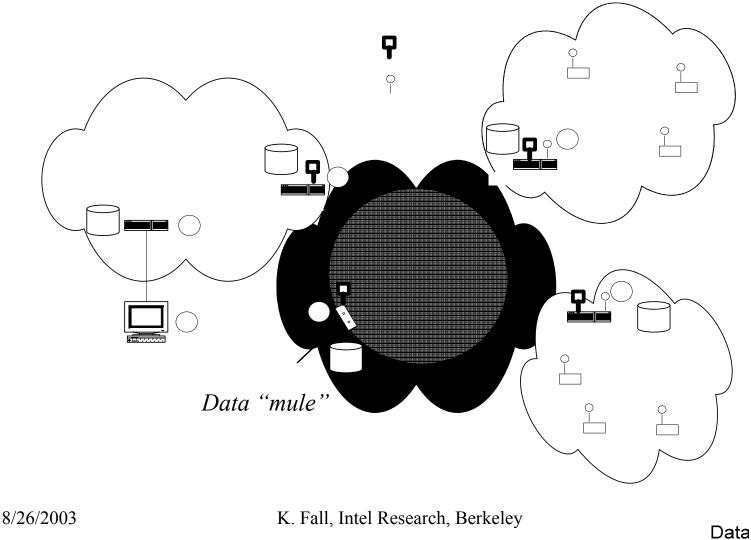
Unstated Internet Assumptions

- Some path exists between endpoints
 - Routing finds (single) "best" existing route
 - [some exceptions...e.g. ECMP]
- End-to-end RTT is not terribly large
 - A few seconds at the very most (usually much less)
 - \rightarrow window-based flow/congestion control works
- E2E reliability using ARQ works well (enough)
 - True for low loss rates (under 2% or so)
- Packets are the right abstraction
 - Internet (IP) makes packet switching interoperable
 - Routers don't modify packets (much) when forwarding

New challenges...

- Very Large E2E Delays
 - Natural prop delay could be seconds to minutes
 - If disconnected, queuing times may be much longer
- Intermittent and Scheduled Links
 - Disconnection may not be due to failure (e.g. LEO sats and scheduling links down for power management)
 - Retransmission may be very expensive
 - Unauthorized access could be a big problem
- 'Radically' Heterogeneous Network Architectures
 - Many specialized networks won't/can't ever run IP

Delay-Tolerant Architecture


- Goals
 - Interoperability across network architectures
 - Reasonable performance in high loss/delay and frequently-disconnected environments
- Components
 - Flexible naming scheme with late binding
 - Message-based overlay abstraction (+API)
 - Routing and link/contact scheduling w/CoS
 - Per-(overlay)-hop authentication and reliability

Naming

- Names ("tuples") are of the URI form:
 - bundles://<region-name>/<URI>
 - Write this more simply as (**R**,**L**)
- Separates region (routing) from admin name
 - R: routing region [globally valid]
 - L: region-specific format, opaque outside region R
- Late binding of L permits naming flexibility
 - Routing based only on region portion
 - L could encode esoteric naming scheme [e.g. diffusion]
 - Could be object names, addresses, queries, etc.
 - Borrows from late binding in URLs and URIs

Example with Sensor Networks

intal

Reliable Message Overlay

- End-to-End Reliable Message Service: *bundles*
 - "postal-like" message delivery over regional transports
 - Optional: enhanced reliability, class of service, return receipt, and "traceroute"-like functions with 3rd-party "report-to" indicator
- Enhanced Reliability via *Custody Transfer*
 - Current Custodian owns reliable-delivery promise
 - Bundles transferred between custodians toward destination in database-style transaction
 - Sender may free resources upon successful custody transfer (destination considered an eligible custodian)

Routing in a DTN

- Scheduled (known) / Unscheduled (opportunistic)
 - S/U characterization may be direction-specific
 - Consider the two ends of a user/ISP link
- Formulation as an LP (ideal case):
 - Minimize the *evacuation* time
 - Constraints on time, buffers, messages, priority
 - Several non-ideal options under investigation
- Predictability continuum:
 - Intermediate "predicted" category may evolve as a result of statistical estimation
 - Concept of *entropy* of a route [?]

8/26/2003

Flow and Congestion Control

- FC is hop-by-hop in the overlay
 - Takes care of CC implicitly
 - Coarse timescale (e.g. 'filesystem full')
- FC for custody transfer not so easy:
 - Don't want custody-traffic awaiting a contact to block forwarding of traffic to an available contact
 - *Options*: stop taking custody, separately queue custody and non-custody traffic, use destination queues, timeout
- Regional transport protocols may support FC
 - How to use built-in FC to effect bundle-layer FC?

Implementation and API

- DTN agent separated from client library
 - Both are RPC-based client and server
 - Either can be interrupted and restarted
- Client <--> agent association via register/callback
 - Registrations [and delivery actions] can be persistent
 - Can poll from last point on re-association
- Agent implements the 'heavy lifting':
 - DB for app (de)registrations, bundle send/recv/demux
 - Name resolution in destination region as required
 - Basic routing, scheduling and storage management functions
 - Custody transfer
 - Authentication and access control (if requested)

Status

- DTN is a message-oriented overlay for:
 - Internetworking in frequently-disconnected networks
 - Interconnecting 'radically heterogeneous' networks
- It evolved from the IPN Architecture
- There is a prototype implementation
 - ~20K lines of C code and some JAVA
 - Demonstrated as basis for query processing in disconnected sensor network
- There is an IRTF research group (DTNRG)

People

- People (designers and implementers):
 - Bob Durst, Keith Scott (MITRE)
 - Scott Burleigh (NASA/JPL)
 - (me)
- More people (vision, design, commentary):
 - Vint Cerf (MCI)
 - Adrian Hooke (NASA/JPL)
 - Juan Alonso (SICS)
 - Howard Weiss (SPARTA)
- The *dtn-interest* list and workshop participants

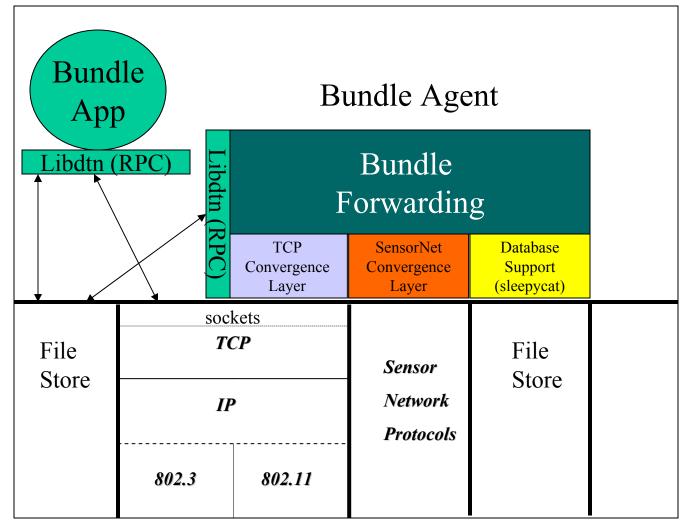
For more Information

- Delay Tolerant Networking Research Group
 http://www.dtnrg.org
- Internet Research Task Force
 - http://www.irtf.org
- DTN Mailing list
 - dtn-interest@mailman.dtnrg.org
- Interplanetary Internet SIG (ISOC group)
 http://www.ipnsig.org

www.dtnrg.org

Thank you...

8/26/2003


K. Fall, Intel Research, Berkeley

So, is this all just e-mail?

	naming/	routing	flow	multi-	security	reliable	priority
	late binding		contrl	арр		delivery	
e-mail	Υ	N	sort-of	sort-of	opt	Υ	N(Y)
DTN	Y	Υ	Y	Y	opt	opt	Y

- Many similarities to e-mail service interface
- Primary difference involves routing
- E-mail depends on an underlying layer's routing:
 - Cannot generally move messages closer to their destinations in a partitioned network
 - In the Internet (SMTP) case, not delay tolerant or efficient for long RTTs due to "chattiness"
- E-mail security authenticates only user-to-user 8/26/2003 K. Fall, Intel Research, Berkeley

Bundle Agent

intal