

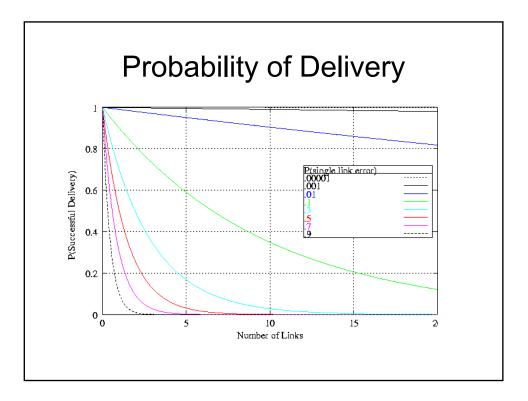
Extreme Delay Links

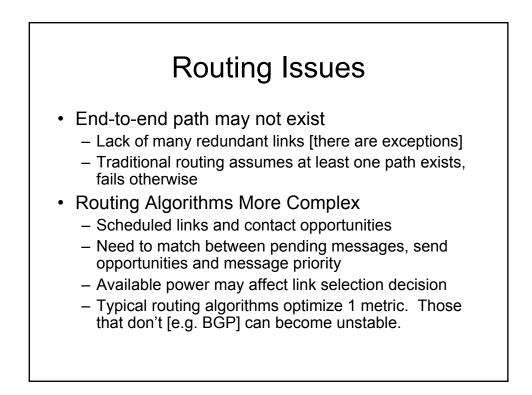
- The Problem:
 - Delivery may be prop or tx-time dominant
 - Both can be extreme:
 - Very long propagation \rightarrow problems w/RTX
 - Very slow links \rightarrow longer tx time, more storage
- Long propagation delay especially difficult
 - Can't buy less latency
 - Adversely affects conventional reliable transports

Asymmetric Links

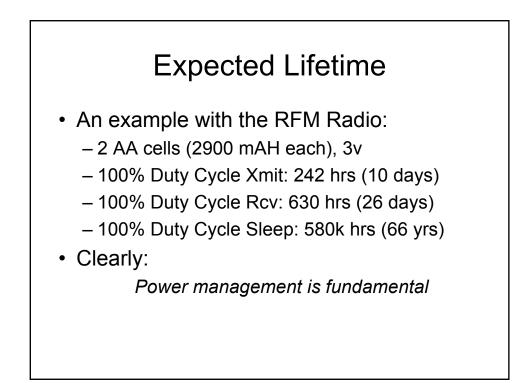
- Significant differences in each direction

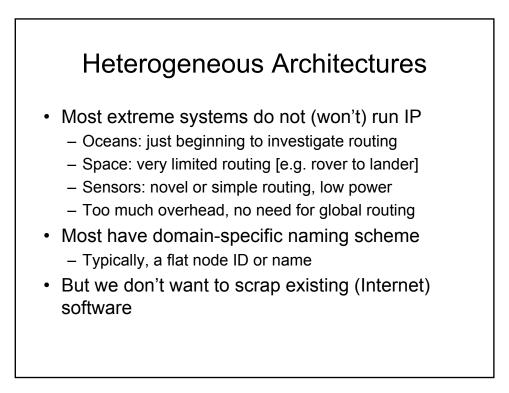
 Latency (MAC behavior, path)
 - Bandwidth (cost/engineering, technology)
 - Loss characteristics (power, path, buffering)
- Problems in one direction affect the other
 - ACK congestion \rightarrow lost ACKs
 - Burst ACK arrivals → burst sending
- Some cases have *no* reverse channel – Possibly applicable to erasure coding...

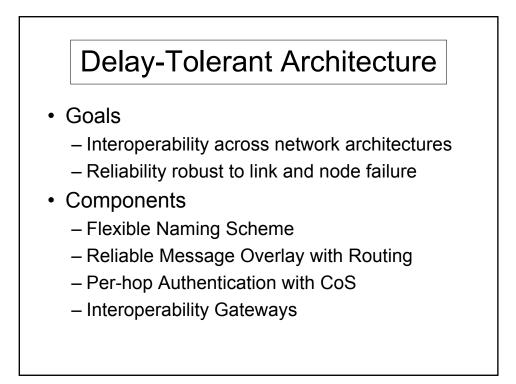


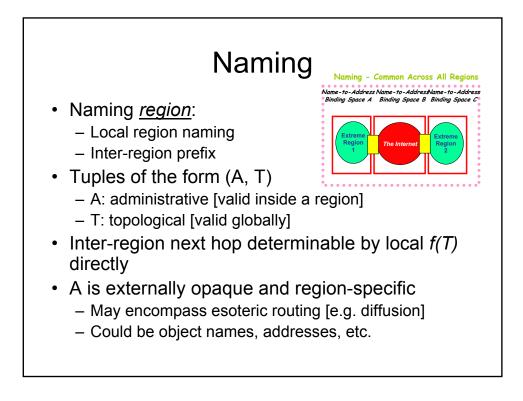

• Prob success (iid fail prob p_f) over k links:

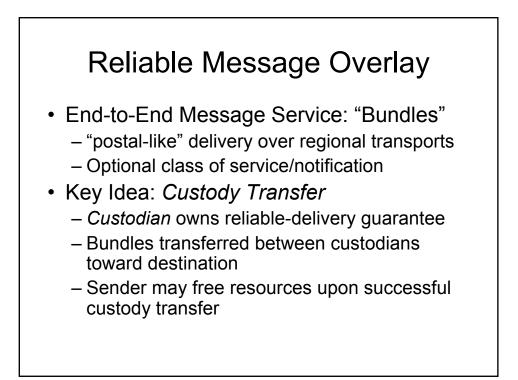
$$p_s = 1 - p_f; p_s(k) = (1 - p_f)^k$$

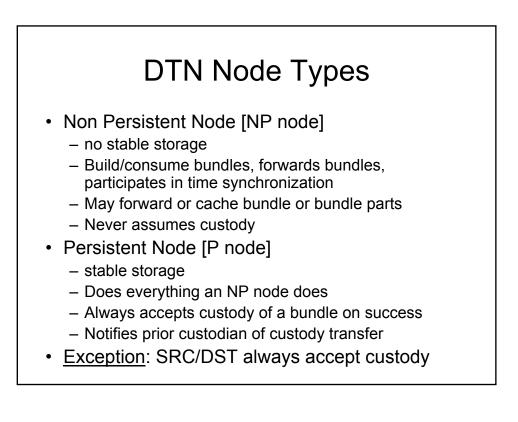

- For E2E delivery must have all links up
- But, expected # of failed links is

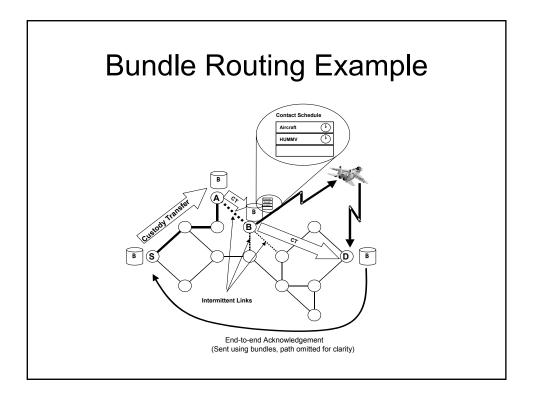

 kp_f






tre	me	devid	ces te	enc	l to	use ba	Horio
tre	me	devid	ces te	enc	l to	use ha	ttorio
							110110
Batte	ry Cell	Storage	Density	Temp	Range	Rapid Charge	Memory
Туре	(V)	(Wh/kg)		(celci	•	(hrs)	Effect
NiCD	1.2	2 40-60		-10 to	+50	.5 to 1	Yes
NiMH	I 1.2	5 60-80		-10 to	+50	2 to 3	No
Li-lon	3.6	6 100		-20 to	+60	3 to 6	No
Li-Po	ly :	3 140		-30 to	+55	8 to 15	No
we	er Re				OUWM1	k LQUWM7k	Sojourner
							e eje anne.
	x Cur	300mA	4.6mA	45	ōmA	43mA	35mA
R			12mA	60)mA	1.09A	170mA
	k Cur	500mA					1
Т			5uA	48	30uA	348uA	28mA


Bundles


Bundles

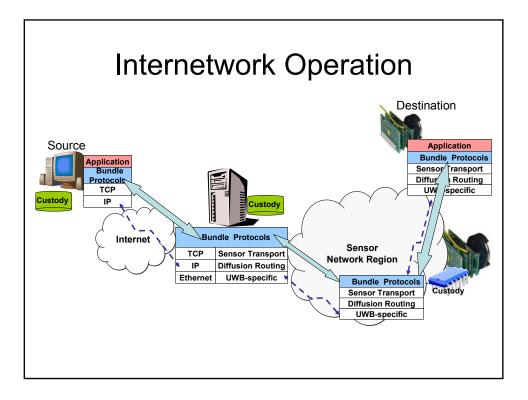
- Arbitrarily long messages delivered end-toend between DTN capable nodes over distinct (but possibly identical) transport layers.
- May have associated delivery characteristics.
 Thus, CoS is always at bundle granularity.
- Bundles may be fragmentary and require reassembly to be complete.
- Authenticated/verified during delivery.

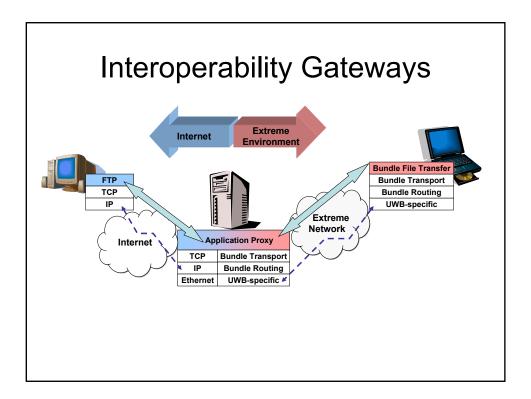
Routing, Forwarding and Custody Transfer

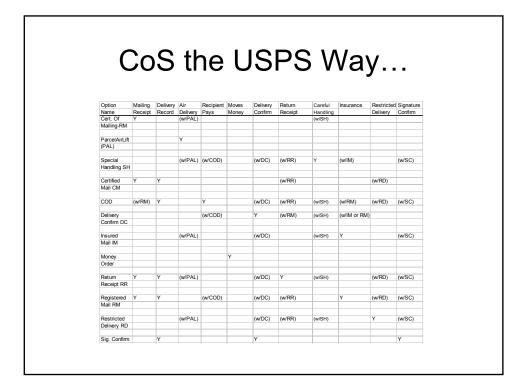
- "Classic" Concepts (Internet):
 - *Routing*: selecting best next hop for every possible destination
 - Forwarding: sending packet to best next hop
 - Typically, "on demand" [statistical multiplexing]
 - Forwarders know *a-priori* next hop for every destination
- DTN Concepts:
 - *Routing*: selecting best DTN next hop for destination
 - *Forwarding*: sending a bundle p2p when possible
 - Custody Transfer: reliable intra-DTN delivery (with storage)

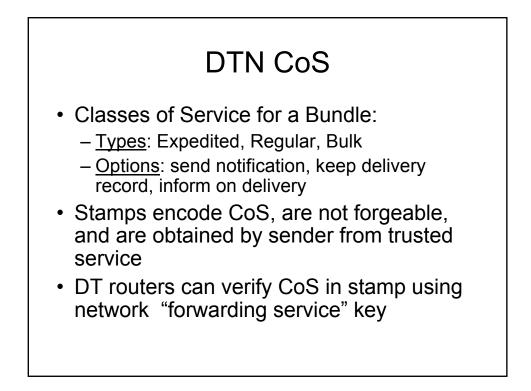
Comparison

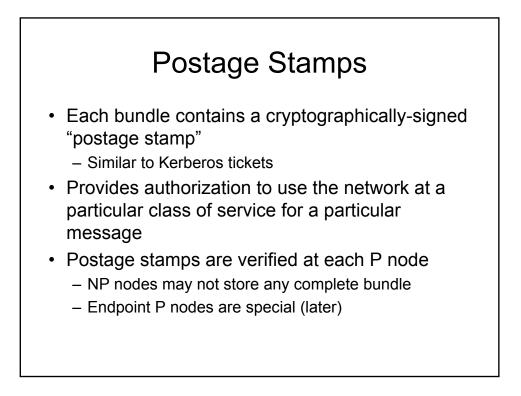
• Trials until success [end-to-end]:

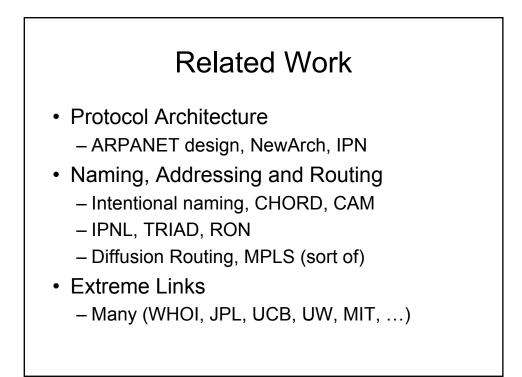

$$E(X) = \frac{1 - (1 - p_f)^k}{(1 - p_f)^k}$$


• Trials until success [link-by-link]:


$$E(X) = \sum_{k} \frac{q}{p} = k \frac{p_f}{(1 - p_f)}$$


(assuming $p_f < 1$)


Pf:	0.1	0.3	0.5	0.7	0.9		0.1	0.3	0.5	0.7	
links	LINK-LINK						F2E				
mixo	0.1	0.3	0.5	0.7	0.9			0.3	0.5	0.7	0.9
1		0.3		2.33	9.00	•	0.1	0.3	1.00	2.33	
2	0.11	0.45	2.00	4.67	18.00	-	0.11	1.04	3.00		
3	0.22	1.29	3.00	7.00	27.00		0.23	1.92	7.00		
4	0.00	1.71	4.00	9.33	36.00		0.52	3.16	15.00		
5	0.56	2.14	5.00	11.67	45.00		0.69	4.95	31.00		
6	0.67	2.57	6.00	14.00	54.00		0.88	7.50			
7	0.78	3.00	7.00	16.33	63.00		1.09	11.14	127.00		
8	0.89	3.43	8.00	18.67	72.00		1.32	16.35	255.00	15240.58	99999999.
9	1.00	3.86	9.00	21.00	81.00		1.58	23.78	511.00	50804.26	999999999.
10	1.11	4.29	10.00	23.33	90.00		1.87	34.40	1023.00	169349.88	9999999999.
11	1.22	4.71	11.00	25.67	99.00		2.19	49.57	2047.00	564501.93	999999999999
12	1.33	5.14	12.00	28.00	108.00		2.54	71.25	4095.00	1881675.42	999999999999999999999999999999999999999
13	1.44	5.57	13.00	30.33	117.00		2.93	102.21	8191.00	6272253.74	999999999999999999999999999999999999999
14	1.56	6.00	14.00	32.67	126.00		3.37	146.44	16383.00	20907514.81	999999999999999999999999999999999999999
15		6.43	15.00	35.00	135.00		3.86	209.63	32767.00	69691718.38	100000000000000000000000000000000000000
16	1.78		16.00		144.00		4.40	299.91	65535.00		
17	1.89		17.00		153.00		5.00	428.87	131071.00		
18	2.00		18.00		162.00		5.66	613.09	262143.00	2581174790.71	
19	2.11				171.00		6.40	876.28	524287.00	8603915971.38	
20	2.22	8.57	20.00	46.67	180.00		7.23	1252.25	1048575.00	28679719906.92	10000000000001000000.



Futures

- DTN work based on earlier IPN Architecture
 - Interplanetary Internet www.ipnsig.org
 - Mitre, JPL, MCI and others
 - DTN generalizes to non-space environments
- Investigations
 - Army TI and Special Forces Ops
 - Heterogeneous UCB/Intel/JPL Sensor Nets
 - UWB Developments
 - BWRC, Intel, UCSD, Rutgers, USC

Thank you for listening...